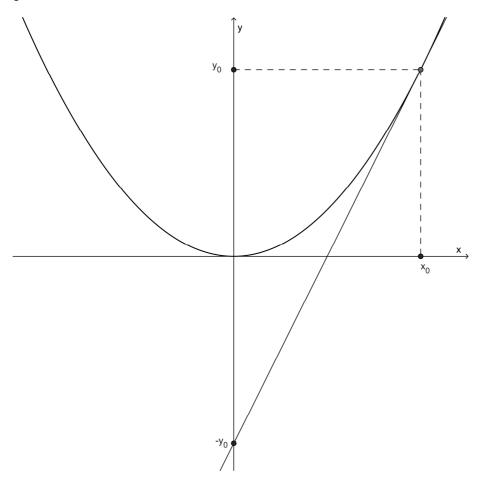
Tangenten an Parabeln lassen sich mit "Zirkel und Lineal" zeichnen. Dabei geht man in folgender Weise vor:

Auf einer Parabel, deren Scheitelpunkt im Ursprung eines Koordinatensystems liegt, markiert man einen Punkt $P_0(x_0|y_0)$ mit $x_0 \neq 0$. Trägt man nun auf der *y*-Achse vom Ursprung aus die Ordinate y_0 nach unten ab, so erhält man den Punkt $P(0|-y_0)$. Bei einer nach unten geöffneten Parabel trägt man die Ordinate entsprechend nach oben ab.

Wird dieser Punkt P mit dem Berührpunkt P_0 durch eine Gerade verbunden, erhält man die Tangente an die Parabel im Punkt P_0 .



- a) Bestätigen Sie rechnerisch, dass dieses Vorgehen für die Parabel mit der Gleichung $f(x) = \frac{1}{4} \cdot x^2$ und den Punkt $P_0(2|1)$ tatsächlich die Tangente liefert.
- **b)** Weisen Sie nach, dass die beschriebene Konstruktion für jede Parabel der Form $f(x) = a \cdot x^2$ ($a \neq 0$) und jeden Berührpunkt P₀ mit Ausnahme des Scheitelpunktes zum Erfolg führt.