a) Da $S > 0$, $b > 0$ und $e^{-ct} > 0$, gilt $f(t) = \frac{S}{1 + b \cdot e^{-ct}} > 0$.

b) $b \cdot e^{-ct}$ ist stets positiv, also ist der Nenner stets größer als 1 und somit gilt $f(t) < S$.

c) Wegen $c > 0$ gilt $b \cdot e^{-ct} \to 0$ für $t \to \infty$, also gilt $\lim_{t \to \infty} f(t) = S$.

d) $f'(t) = \frac{S \cdot b \cdot c \cdot e^{-ct}}{(1 + b \cdot e^{-ct})^2} = \frac{S \cdot c \cdot (1 + b \cdot e^{-ct}) - S \cdot c}{(1 + b \cdot e^{-ct})^2} = \frac{S \cdot c}{1 + b \cdot e^{-ct}} - \frac{S \cdot c}{(1 + b \cdot e^{-ct})^2}$

mit $k = \frac{c}{S}$

e) Wegen $k > 0$, $f(t) > 0$ und $S - f(t) > 0$ gilt $f'(t) > 0$. Somit ist f streng monoton wachsend.

f) Wegen $f(t) \to S$ für $t \to \infty$ gilt $S - f(t) \to 0$ für $t \to \infty$, also $\lim_{t \to \infty} f'(t) = 0$.